Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times.
نویسندگان
چکیده
We analytically investigate the interspike interval (ISI) density, the Fano factor, and the coefficient of variation of a leaky integrate-and-fire neuron model driven by exponentially correlated Gaussian noise with a large correlation time tau . We find a burstinglike behavior of the spike train, which is revealed by a dominant peak of the ISI density at small intraburst intervals and a slow power-law decay of long interburst intervals. The large, power-law distributed ISIs give rise to a coefficient of variation which diverges as square root [tau] . This leads to the paradoxical effect that ISI correlations, as expressed by the serial correlation coefficient, vanish for large correlation times. This is in contrast to findings of previous works on a simpler neuron model where the effect of noise correlations appeared in higher-order statistical measures.
منابع مشابه
Neuron firing in driven nonlinear integrate-and-fire models.
Statistical properties of neuron firing are studied in the framework of a nonlinear leaky integrate-and-fire model that is driven by a slow periodic subthreshold signal. The firing events are characterized by first passage time densities. The experimentally better accessible interspike interval density generally depends on the sojourn times in a refractory state of the neuron. This aspect is no...
متن کاملInterspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue
Neuronal adaptation as well as interdischarge interval correlations have been shown to be functionally important properties of physiological neurons. We explore the dynamics of a modified leaky integrate-and-fire (LIF) neuron, referred to as the LIF with threshold fatigue, and show that it reproduces these properties. In this model, the postdischarge threshold reset depends on the preceding seq...
متن کاملStatistics of a neuron model driven by asymmetric colored noise.
Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two differ...
متن کاملAre the input parameters of integrate-and-fire neurons uniquely determined by rate and CV?
Integrate-and-fire (IF) neurons have found widespread applications in computational neuroscience. Particularly important are stochastic versions of these models where the driving consists of a mean input (base current μ) and a fluctuating current (white Gaussian noise of intensity D). Different IF models have been proposed, the firing statistics of which depends nontrivially on the input parame...
متن کاملAre the input parameters of white-noise-driven integrate & fire neurons uniquely determined by rate and CV?
Integrate & fire (IF) neurons have found widespread applications in computational neuroscience. Particularly important are stochastic versions of these models where the driving consists of a synaptic input modeled as white Gaussian noise with mean μ and noise intensity D. Different IF models have been proposed, the firing statistics of which depends nontrivially on the input parameters μ and D....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2008